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Abstract

The in¯uence of Prandtl number on statistical parameters characterizing turbulent transport and the spatial variation of the

mean-square of the temperature ¯uctuations, h2, is described. The system considered is fully developed ¯ow in a channel for which

the bottom wall is heated and the top wall is cooled. Results from direct numerical solutions of the Euler balance equations for

Pr� 0.3, 1, 3, 10 and Lagrangian studies, in a DNS, of the dispersion of heat markers from wall sources for Pr� 0.1±2400 are used.

The Eulerian results for Pr� 10 are new and of particular interest. A time scale sh can be de®ned from the dissipation of kh � h2=2,

as sh � kh=�h. This is analogous to the time scale de®ned from the dissipation of turbulent kinetic energy, s � k=�. Prandtl number is

found to strongly a�ect sh and the correlation, uih=�u2
i �1=2�h2�1=2

. These results can be understood by recognizing that the spectral

density function for temperature ¯uctuations extends over an increasingly larger range of wavenumbers as Pr increases. The ob-

served e�ect of Pr on sh suggests fundamental problems in developing relations for the turbulent di�usivity by a khssh approach

analogous to the ks approach used to describe momentum transport. The use of a gradient transport model to represent the tur-

bulent transport of kh also has fundamental problems. Ó 1999 Elsevier Science Inc. All rights reserved.
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Notation

cp speci®c heat at constant pressure
D molecular di�usivity
Dt turbulent di�usivity
H half channel height
K mass transfer coe�cient
k turbulent kinetic energy or ¯uctuating mass

transfer coe�cient
kx streamwise wavenumber
kh half the mean-square temperature ¯uctuations
n exponent that describes the variation of Dt

with the distance from the wall
P pressure
Px streamwise pressure gradient

Ph production of h2

Pr Prandtl number
Prt turbulent Prandtl number
q local heat ¯ux
q2 u2 � v2 � w2

qw heat ¯ux at the channel wall
Rhu correlation coe�cient of h and u

Rhv correlation coe�cient of h and v
Sc Schmidt number
T temperature
T mean temperature
Tw temperature at the wall
T � friction temperature
t time
u velocity vector
u; v; w ¯uctuating velocity components in the x; y; z

directions
us friction velocity
Whh spectral density function for hh
Whv co-spectral density function for hv
x; y; z streamwise, normal and spanwise coordinates
yw distance from the lower wall made dimen-

sionless by wall variables
w weight function

Greek
Dh thickness of conductive layer
� dissipation of turbulent kinetic energy
�h dissipation of temperature ¯uctuations

~�h �h ÿ 1=Pr�o�h2�1=2
=oy�2

jh von Karman constant for temperature
kx Taylor microscale for temperature in the x

direction
ky Taylor microscale for temperature in the y
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1. Introduction

The principal theoretical problem in turbulent transport is
to relate local rates and temperature ¯uctuations to the
properties of the ¯uctuating velocity. The classical approach
has been to use the analogy which assumes the eddy di�usivity
of heat, Dt, is proportional to the eddy kinematic viscosity, mt.
The implementation of this approach requires the prediction of
the turbulent Prandtl number, Prt � mt=Dt. The modelling of
Prt has often involved the utilization of the dissipation of the

variance of the temperature ¯uctuations, h2=2 � kh, in a
framework that mimics the use of k in the k=� equation for
momentum transport (Launder, 1978; Nagano and Kim, 1988;
Youssef et al., 1992). Another approach has been to develop
an equation for the scalar transport term, hui (Launder and
Samaraweera, 1979; Nagano and Tagawa, 1988 ; Nagano and
Tagawa, 1990). A critical test for models of scalar-transport is
their ability to predict the in¯uence of Prandtl number on
statistical parameters that appear in the equations describing
the system.

With advance of large scale computers, several direct
numerical simulations of turbulent channel ¯ow with heat
transfer were carried out (Kim and Moin, 1989; Kasagi and
Ohtsubo, 1993; Kawamura et al., 1997; Kawamura and Abe,
1998; Wikstrom and Johansson, 1998) for Pr6 5 with dif-
ferent types of thermal boundary condition. This laboratory
also has been addressing the question raised above by
studying fully developed heat transfer in a channel in which
the bottom wall is heated and the top wall is cooled at the
same rate so that both walls are kept at constant tempera-
tures (Tw and ÿTw). Since the velocity and temperature ®elds
are fully developed, the heat ¯uxes at di�erent distances
from the bottom wall are the same. Direct numerical simu-
lations of the Eulerian balance equations for Pr� 0.05±10
have been performed. Lagrangian studies have been carried
out that involve the study of the dispersion of heat markers
from wall sources characterized by Pr� 0.1±2400. This paper
gives an account of these studies. Particularly noteworthy
are the recently developed DNS for Pr� 10 and the dem-
onstration that Lagrangian methods can be used at arbi-
trarily large Pr.

Results are presented for the turbulent di�usivity, for the

terms in the balance equation for kh, for the correlation coef-

®cients, hui=�h2�1=2�u2
i �1=2

, and for the timescale de®ned from

the thermal dissipation, sh � �h2=2�=�h. An understanding of

the in¯uence of Pr on these quantities needs to recognize that

the spectral density function for h2 extends over an increasing
range of wavenumbers as Pr is increased. An important con-
clusion is that the use of sh in developing models for the
temperature ®eld is ¯awed.

2. Methodology

2.1. Eulerian approach

Numerical solutions are obtained for the three-dimensional,
time-dependent Navier±Stokes equation in a skew-symmetric
form and the advection±di�usion equation.

ou

ot
� �u� x� ÿ rPÿ Pxex �r2u; �1�

oT
ot
� u � rT � 1

Pr
r2T ; �2�

where

x � r� u; �3�

P � P ÿ Pxx� �u � u�=2 �4�

and u and P denote the velocity vector and the static pressure.
All variables are made dimensionless by using wall variables.
Solutions of Eqs. (1) and (2) are obtained, which are periodic
in the streamwise and spanwise directions, by using the algo-
rithm described by Lyons et al. (1991). The Reynolds number
based on the friction velocity and the half-channel height, H , is
150. In presenting the results, x, y, z and u, v, w represent co-
ordinates and velocity components in the streamwise, the wall-
normal and the spanwise directions.

The results for Pr� 10 are for an x, y, z grid of
128� 193� 128. The resolution in the y-direction varied from
Dy � 0:02 at the wall to Dy � 2:45 at the center of the channel.
The resolutions in the x and z directions were Dx� 15, Dz� 7.5.
Preliminary computations were conducted on a coarse grid
and the ¯ow ®eld was interpolated onto the 128� 193� 128
grid. A time of about 800 m=u2

s was required to reach a sta-
tionary state and the averaging time was 715 m=u2

s . Averaging
was also carried out in the x and z directions so the statistics
vary only with y. A memory of 2 gigabytes was required on a
HP/Convex-X. Computer runs were also carried out with grids
of 128� 257� 128 and 128� 193� 256 to ensure adequacy of
the resolution. These computations were performed for long
enough time to get reasonable mean statistics up to second
order. The results show the following: (a) A wall-normal res-
olution of 193 grids is required; higher resolution in this di-
rection improves calculations of the mean temperature and the
root-mean square of the temperature ¯uctuations only slightly
(peak rms temperature ¯uctuations di�er by 1:6%). (b) The use
of a higher resolution in the spanwise direction (256 grid
points) does not produce signi®cant changes in the ®rst-order
statistics.

The results presented in this paper for Pr� 0.3, 1 and 3
were obtained for a 128� 129� 128 grid for which Dy varied
from 0.045 to 3.68. A time of about 1000 was needed to
reach a stationary state; averaging was done over time peri-
ods of 775, 750, 370 m=u2

s for Pr� 0.3, 1.0 and 3.0, respec-
tively. A memory of 0.7 gigabytes was needed on a HP/
Exemplar-S.

A principal focus of this paper is the comparison of cal-
culations with Pr� 1, 3 and 10. For low Peclet numbers, equal
to the product of Re and Pr, the turbulent di�usivity is qual-
itatively di�erent from what is found for large Pe, in that
molecular di�usion is causing the turbulent di�usivity to de-
crease because of ``leakage'' of thermal tags from eddies
(Kontomaris and Hanratty, 1994). Because of the low values
of Pe used in the DNS, this becomes important for Pr� 0.3,
for which the ratio of the molecular di�usivity to the turbulent
di�usivity is about 1/3.

kz Taylor microscale for temperature in the z
direction

kh Taylor microscale de®ned by
1=k2

h � 1=k2
x � 1=k2

y � 1=k2
z

m kinematic viscosity
mt turbulent kinematic viscosity
x vorticity vector
P pseudo pressure
q ¯uid density
r standard deviation
s time scale of velocity ®eld
sh time scale of temperature ®eld
h ¯uctuating temperature
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2.2. Lagrangian calculations

The trajectories of heat markers released at time t0 from an
in®nitesimal source on the wall were calculated in a DNS of
channel ¯ow. The Reynolds number based on the half-height
of the channel and the friction velocity was 150. The calcula-
tions were done with an x, y, z grid of 128� 65� 128. The
particle tracking method developed by Kontomaris et al.
(1992) was used. Each marker moves due to convective and to
molecular e�ects. The convective part of the motion is calcu-
lated from the ¯uid velocity at the marker position. The e�ect
of molecular di�usion is simulated by imposing a three-
dimensional random walk on the particle motion; it is added to
the convective part of the motion after each time step, Dt, and
takes values from a Gaussian distribution with zero mean and
standard deviation r � �2Dt=Pr�1=2

, in wall units (Papavassi-
liou and Hanratty, 1995; Kontomaris and Hanratty, 1994). A
total of 16,128 markers were released on a 127� 127 grid that
covered the bottom wall. The behavior of the markers was
followed over a time period of 2750 wall units. A time step of
Dt � 0.25 was used.

The experiments with instantaneous sources provide the
probability function, P1�xÿ x0; y; t ÿ t0� dx0 dt0. A physical
interpretation of P1 is that it represents the evolution in time of
the ensemble average of markers released instantaneously from
a line source at the wall. Since the ¯ow ®eld is homogeneous in
the x and z directions, there is no statistical dependence on the
initial location of the point sources.

Probability P1 can be used to obtain information about the
behavior of a continuous line source at x0 by integrating over
time.

P2�xÿ x0; y� �
Z1

0

P1�xÿ x0; y; t ÿ t0� d�t ÿ t0�: �5�

The distribution of mean temperature over a plane source is

T �x; y� �
Zx

0

P2�xÿ x0; y� d�xÿ x0�: �6�

The temperature ®eld from a heated bottom wall and a cooled
top wall is then given as

T �x; y� �
Zx

0

�P2�xÿ x0; y� ÿ P2�xÿ x0;ÿy�� d�xÿ x0�; �7�

where y is the distance from the center of the channel. A
fully developed temperature pro®le is obtained by letting
x!1.

The Eulerian simulations used Tw� constant as the boun-
dary conditions for the mean temperature at the wall. In order
to compare Lagrangian results with the Eulerian results, a
weight function, w�t�, needs to be introduced so that the
number of markers at the wall remains constant throughout
the time integration. Eq. (7) thus becomes

T �x; y� �
Z1

0

Zx
0

w�t ÿ t0�P1�xÿ x0; y; t ÿ t0�d�xÿ x0� d�t ÿ t0�

�8�
with

w�t ÿ t0� � Tw ÿ T �y � ÿh; t ÿ t0�
Tw

: �9�

3. Results from Lagrangian method

Results from the Lagrangian analysis have been presented
by Papavassiliou and Hanratty, 1995; Papavassiliou and
Hanratty, 1997. This section gives a brief review of the ®nd-
ings, in order to enhance the discussion of the e�ects of Pr on
statistical properties of the temperature ®eld. Fig. 1 shows a
typical path for a thermal marker with Pr� 100, that started at
the wall, y � ÿH=2, t � t0. The ordinate is the dimensionless
time, t, and yw is the dimensionless distance from the wall. At
small times the markers move away from the wall by molecular
di�usion. Eventually they become entrained in the turbulence
and turbulent motions dominate their dispersion from the
wall. The distance from the wall at which the marker becomes
entrained in the turbulence increases with decreasing Prandtl
number. Three zones are observed: a region where molecular
di�usion dominates, a region where there is an interaction
between molecular and turbulent di�usion, a region where
turbulent di�usion dominates. For very small Prandtl numbers
only the ®rst two regions are present. Fig. 2 shows the average
locations at two di�erent times of a large number of Pr� 1
markers that originate at the wall at t� 0. This clearly shows
that a speci®c region of space will be primarily a�ected by
markers released over a speci®c time interval.

Fig. 1. Typical trajectory for a thermal marker with Pr� 100.

Fig. 2. Spatial distributions of Pr� 1, heat markers released at the wall

at t� 0.
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Results such as these can be used to calculate the average
temperature ®eld at a given distance downstream, x, from the
entrance of a section where heat is added to the ¯uid from the
bottom wall at a constant rate and removed from the top wall
at the same rate. For large enough x the average temperature
®eld, calculated in this way, reaches a fully developed condi-
tion. This analysis was used to calculate the mass transfer
coe�cients, made dimensionless with the friction velocity, that
are presented in Fig. 3.

Results from three separate laboratory studies in a pipe at
Sc� 2400 are also presented, as are results from the DNS. In
studies with the DNS, the temperature driving force is de®ned
as the di�erence between the temperature of the bottom wall
and the bulk temperature in the bottom half of the channel
[rather than the centerline temperature as used by Papavassi-
liou and Hanratty (1997)]. The Lagrangian calculations agree
closely with the laboratory measurements and with Eulerian
calculations. The straight line represents the relation developed
by Shaw and Hanratty (1977) from their measurements of
mass transfer in a pipe over a range of Schmidt numbers of 693
to 39,300. The Lagrangian calculations of mass transfer rates
and eddy transport coe�cients (Papavassiliou and Hanratty,
1997) support the controversial suggestion of Shaw and
Hanratty that K � Scÿ0:704 at large Sc, rather than as Scÿ2=3 or
Scÿ3=4. They are represented by Dt � y3:38 for large Pr, rather
than y3. The results from the DNS at smaller Pr, however, are
represented by K � Scÿ0:546. Interpretations of the results at
large Sc have been presented by Campbell and Hanratty (1983)
and by Hanratty and Vassiliadou (1988).

An interesting comparison between the Lagrangian and
Eulerian computations can be made. Both use the turbulent
velocity ®eld obtained from a DNS. For the present, the
Eulerian calculation is limited to Pr6 10. However the La-
grangian calculation can be done for arbitrarily large Pr. An-
other result (Papavassiliou and Hanratty, 1997) coming from
Lagrangian calculations is that the spatial variation of the
turbulent di�usion coe�cient observed in the Eulerian analysis
is not entirely due to spatial variations of the turbulence ± but
is strongly a�ected by the time-dependency of turbulent dif-
fusion. Many aspects of the physics of turbulent transport are
understood more clearly with the Lagrangian analysis for the
simple case of turbulent ¯ow in channel. To complete this
theoretical approach one needs to develop a model for di�u-
sion from a wall source.

4. Results from Eulerian calculations

4.1. Mean temperatures

Mean temperatures, obtained from the Eulerian calcula-
tions, are shown in Fig. 4 for Pr� 1, 3 and 10. The abscissa is
the distance from the center of the channel made dimensionless
with the half height. The ordinate is the mean temperature
relative to the centerline temperature divided by the absolute
value of the di�erence of the wall temperature and the cen-
terline temperature. Lagrangian results for Pr� 1,10 are also
presented for comparison. The good agreement provides sup-
port for the accuracy of the Eulerian calculations. Fig. 5 is a
semi-logarithmic plot in which the abscissa is the distance from
the bottom wall made dimensionless with the friction velocity
and the kinematic viscosity. The ordinate is the di�erence be-
tween the local mean temperature and the wall temperature
made dimensionless with the friction temperature,
T � � qw=qcpus. Even though an extensive well-de®ned loga-
rithmic layer is not expected, straight lines represented by the
equation

Fig. 4. Comparison of mean temperature pro®les.

Fig. 5. Mean temperature pro®les in semi-log coordinate.
Fig. 3. Comparison of values of K obtained by Eulerian and La-

grangian methods. The line indicates measurements for large Sc.
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T ÿ Tw

T �
� 1

jh
ln yw � Bh �10�

are presented, where jh� 0.22, 0.21, 0.23 and Bh� ÿ1.0, 14.7,
49.5 for Pr� 1, 3, 10. It is noted that the slope 1=jh is ap-
proximately constant for the Pr considered. These jh are lower
than the values of 0.48 obtained by Subramanian and Antonia
(1981) for a turbulent boundary layer and 0.45 for measure-
ments in an electrically heated pipe obtained by Johnk and
Hanratty (1962). This di�erence in jh is thought to be due to
the thermal boundary condition at the wall and the much
lower Reynolds number considered in the present work. A
conductive sublayer exists close to the wall where turbulence is
making a negligible contribution to the transfer of heat. Its
thickness for Pr� 1, 3, 10 is, respectively, yw� 6.0, 3.6, 1.9.
Thus, the thickness of this layer, Dh, varies as Prÿ1=2, over this
range of Pr.

4.2. Balance equation for temperature variance

Measures of the magnitude of the temperature and velocity
¯uctuations are h2 and q2 � u2 � v2 � w2. A balance equation
for kh � h2=2, analogous to the balance for k � q2=2, can be
written as follows for fully developed ¯ow in a channel:

0 � ÿ hv
dT
dy
ÿ 1

2

d�h2v�
dy

� 1

Pr

d2kh

dy2

ÿ 1

Pr

oh
ox

� �2
"

� oh
oy

� �2

� oh
oz

� �2
#
; �11�

where T and h are the mean and ¯uctuating temperatures. All
variables in this equation (and in subsequent discussions) are
made dimensionless with the kinematic molecular viscosity, the
friction velocity, us, and the friction temperature, T �. The
terms in Eq. (11) are the production of kh, the turbulent
transport of kh, the molecular transport of kh and the dissi-
pation of kh, which has been designated as �h. A sensitive test
that a stationary state has been reached is when the sum of
these terms equals zero. For Pr� 10, the maximum imbalance,
which occurs in the middle of the channel, is about 1.2% of the
maximum production. As more samples are added, this im-
balance decreases very slowly but the overall shapes of the
curves representing terms in the budget hardly change.

Figs. 6 and 7 present values of hv and the production of
temperature ¯uctuations, Ph, for di�erent Pr. As Pr increases,
the heat ¯ux by turbulent transport, hv, becomes increasingly
important near the wall. In the middle of the channel, the e�ect

of molecular conductivity is relatively small and heat is mainly
transported by the turbulence. Due to the ®nite temperature
gradient (Fig. 4), the production does not go to zero in the
middle of the channel. Sharp maxima in the production are
noted close to the wall and a smaller broad maximum is ob-
tained in the center of the channel. Fig. 8 presents calculations
of the root mean-square of h. Maxima correspond roughly
with the maxima in the production of kh. Due to the increase in
production with increasing yw in the middle of channel, tem-
perature ¯uctuations increase with yw in this region for all Pr.

Plots of the correlation coe�cient Rhu � hu=�h2�1=2�u2�1=2

and Rhv � hv=�h2�1=2�v2�1=2
are presented in Figs. 9 and 10. The

strong decrease of these correlations with increasing Pr is

particularly noteworthy. As shown in Fig. 6, hv is higher for
higher Pr throughout the channel. In order to understand the

decrease in Rhv, it is useful to look at the behavior of hv and h2

in wavenumber space. Figs. 11 and 12 are the cumulative

spectral density functions of hv and h2 versus wavenumber in
the streamwise direction, kx, at yw � 25. Plots of

R kx

0
Whh dkx

show that the contribution from high wavenumbers to h2 in-
creases in importance as Pr increases. However, its in¯uence
on the cumulative co-spectral density function for hv is
relatively small. This is because high wavenumbers do not

contribute signi®cantly to v2, as they do to h2 at large Pr. Thus,

Fig. 6. Comparison of hv.

Fig. 7. Production of kh, Ph.

Fig. 8. Temperature ¯uctuations.
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the ratio of hv=�h2�1=2�v2�1=2
decreases as Pr increases. It should

be noted that the calculations for Pr� 10 in Fig. 12 used 256
grid points in the x-direction. This accounts for the larger
range of kx studied for this condition.

Calculations of �h are presented in Fig. 13. The very high
values close to the wall are in a region where the instantaneous
temperature pro®les are linear but oscillating in time. Usual

practice is to de®ne a term ~�h � �h ÿ 1=Pr o�h2�1=2
=oy

� �2

which

does not include the dissipation associated with these oscilla-
tions. Thus, the modi®ed dissipation can be represented as
follows:

~�h � 1

Pr

oh
ox

� �2
"

� oh
oz

� �2
#
� 1

Pr

oh
oy

� �2

264 ÿ o
�����
h2

q
oy

0@ 1A2375:
�12�

Values of ~�h are presented in Fig. 14. One can use Eq. (12) to
de®ne a microscale, analogous to that de®ned by Taylor for
the dissipation of turbulent energy,

~�h � 1

Pr

h2

2

1

k2
h

 !
; �13�

where

1

k2
h

� 1

k2
x

� 1

k2
y

� 1

k2
z

: �14�

The scale, kh, is found to decrease with increasing Pr. The
plot for Pr� 0.3, 1.0, 3.0, 10.0 in Fig. 15 shows, for a ®xed
Reynolds number, that kh � Prÿ1=3. This result is consistent
with Fig. 12 which shows that the contributions of high

wavenumbers to h2 becomes more important with increasing

Pr.

5. Results on turbulent di�usivity

A turbulent di�usivity of heat is de®ned as

hv � Dt dT
dy
: �15�

This can be obtained from calculations of hv and dT=dy. It
can also be calculated from a knowledge of T �y� and the heat
¯ux, qw, at the wall. Since a fully developed condition is
considered,

q�y� � qw � ÿ�D� Dt� �qcpT �
dy

: �16�

Fig. 9. Correlation coe�cient Rhu.

Fig. 10. Correlation coe�cient Rhv.

Fig. 11. Cumulative co-spectral density function of hv at y� 25.

Fig. 12. Cumulative spectral density function of h2 at y� 25.
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If this is written in a dimensionless form,

1 � ÿ 1

Pr

�
� Dt

�
dT
dy
; �17�

where Dt is made dimensionless with the molecular kinematic
viscosity, T , by the friction temperature and y, by the ratio of
the kinematic viscosity to the friction velocity. In the Eulerian
calculations the same value of Dt was obtained by Eqs. (15)
and (17) after a stationary state was reached. In the La-
grangian calculation Dt was obtained from Eq. (17).

Values of Dt obtained from Eulerian calculations for Pr� 1,
3, 10 are presented in Fig. 16, along with the values of the
turbulent kinematic viscosity, mt, obtained for H � 150. The
turbulent viscosity shown in this ®gure was calculated with a
128� 193� 128 grid. It is noted in this plot that Pr is not
having a strong e�ect on Dt for Pr P 1. In the central regions
of the channel slight di�erences are noted. These could be real,
but they also could re¯ect computational issues. As can be seen
in Fig. 4, the temperature gradient at the center of the channel
decreases with increasing Pr so that the accuracy of the cal-
culation becomes more important. Furthermore, the compu-
tations show that the central regions of the channel come to a
stationary state slowly because the convection of temperature
is in¯uenced by large scale, small frequency velocity ¯uctua-
tions. Thus, di�erences between the Pr� 1 and Pr� 3 calcu-
lations could have arisen because insu�cient time was allowed
to reach a stationary state for Pr� 3. This does not seem to be
the case for Pr� 10, so the di�erence could be real. However,
the velocity ®eld in the Pr� 10 calculations was slightly dif-
ferent from that which existed for Pr� 1 because a grid with a
higher resolution was used.

The results in Fig. 16 show that the turbulent di�usivities
for Pr� 1, 3, 10 are approximately equal to the turbulent
viscosity for yw < 0:18H or yw < 28 wall units. A comparison
of the maximum mt with the maximum Dt for Pr� 1 gives a
turbulent Prandtl number approximately equal to 0.87 in the
center regions of the channel. This is somewhat larger than
what has been obtained in calculations for heat transfer from
two walls at the same temperature (Antonia and Kim, 1991).
This suggests that Prt could depend weakly on the boundary
conditions for the heat transfer and, perhaps, on the Reynolds
number.

Fig. 17 shows the limiting behavior of Dt=y3. The value of
Dt=y3 decreases weakly with Pr as yw ! 0. It is also noted that
the thickness of the region, where Dt=y3 is constant, decreases
with increasing Pr, which suggests that this region would be

Fig. 16. Turbulent di�usivity.Fig. 15. Comparison of khPr1=3 at di�erent Pr.

Fig. 13. Total dissipation of temperature ®eld.

Fig. 14. Plot of ~�h � �h ÿ �1=Pr� o
�����
h2

q ,
oy:

 !2

.
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buried in a very thin conductive sublayer or would disappear
in the limit of very high Pr. Since the contribution from tur-
bulent transport is very small compared to that of molecular
transport in this sublayer, the e�ect of turbulent motion for
y ! 0 does not in¯uence the mean temperature pro®le for very
large Pr and the approach of assuming Dt � y3

w may not be
correct.

The balance of turbulent kinetic energy, k, has a term, �,
which represents the rate of energy dissipation. A bulwark of
k±� models and Reynolds stress closure models is the de®nition
of a characteristic time scale, s, by using � � ksÿ1 as a model
for �. In the k±� model the turbulent viscosity is taken as
mt � ks � k2=�. In attempts to use the temperature balance
equation to model Dt, an additional time scale, sh has been
introduced, which is de®ned as ~�h � khsÿ1

h . Assumptions that
Dt � ksh or Dt � k�shs�1=2

have been made (Nagano and Kim,
1988). Calculated sh are plotted in Fig. 18 for Pr� 0.3, 1, 3, 10.
Values of s, calculated from the velocity ®eld with a 128�
193� 128 grid, are also presented. Time scale sh is seen to be
strongly a�ected by Pr and to have a di�erent shape from s.
Since kh varies as Prÿ1=3, it follows that sh � Pr1=3. This sug-
gests that the model for ~�h is ¯awed unless the e�ect of Pr on sh

can be explained more easily than the e�ect of Pr on ~�h. Fur-
thermore, relations for Dt of the type given above are incon-

sistent with the results in Fig. 16 which show a small e�ect (if
any) of Pr on Dt.

The gradient transport model has also been used to calcu-
late the turbulent convection of kh, by assuming

uih
2 � Dt oh

2

oxi
: �18�

Values of h2v are presented in Figs. 19 and 20 for Pr� 1 and

10. The curves are plots of Dt�dh2=dy�. It is seen that the model
is fundamentally incorrect (as would be expected). Locations

at which vh2� 0 do not correspond to a location where

oh2=oxi � 0. However, there is a rough agreement in the lo-

cations of maxima in vh2 and Dtoh2=oy.

6. Conclusion

For Pr P 1 and for yw > 5, the in¯uence of Prandtl number

on Dt is quite small. However, large e�ects of Pr on

uih=�u2
i �1=2�h2�1=2

, h2, sh and kh are observed. This can be un-

Fig. 19. Test of gradient di�usion model for turbulent transport term

at Pr� 1.

Fig. 20. Test of gradient di�usion model for turbulent transport term

at Pr� 10.

Fig. 17. Limiting behavior of turbulent di�usivity.

Fig. 18. Time scale of temperature ®eld in wall unit.
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derstood by recognizing that the range of wavenumbers asso-
ciated with the ¯uctuating temperature ®eld increases with Pr.
At large Pr the spectral function for h2 can extend to wave-
numbers for which the spectral functions for the velocity ®eld
are close to zero (Batchelor, 1967; Tennekes and Lumley,
1972). However, the correlation between the velocity and
temperature ¯uctuations is determined by a range of wave-
numbers which is approximately independent of Pr. These
results suggest that s, rather than sh is a more signi®cant time
scale characterizing turbulent transport of heat. (This seems to
be what was suggested by Horiuti, 1992.) A corollary of this
observation is that the use of a turbulent Prandtl number to
relate scalar transport to the velocity ®eld could be a sensible
approach. In fact, the assumption that Dt � mt is a good ap-
proximation for the viscous wall region (beyond yw � 5) and
the log layer. In the outer ¯ow, Dt > mt and the turbulent
Prandtl number depends on the boundary conditions. The
Lagrangian methods developed by Papavassiliou and Han-
ratty (1995, 1997) could provide an opportunity to explore
these e�ects.

For Pr� 1 the turbulent Prandtl number is unity for yw < 5.
At small yw the turbulent di�usivity increases as y3

w for all Pr.
However, Dt=y3

w decreases weakly with increasing Pr as yw ! 0.
This can be understood if it is recognized that temperature
¯uctuations in this region are mainly governed by ¯uctuations
in the rate of heat transfer at the wall, rather than hydrody-
namic mixing of hot and cold ¯uid (Shaw and Hanratty, 1977).

The thickness of the region where Dt � y3
w decreases with

increasing Pr. However, it always lies in the conductive sub-
layer where turbulent transport is negligible compared to
molecular transport; that is, turbulent e�ects in this region are
not directly in¯uencing the mean temperature pro®le. For very
large Pr almost all of the temperature change occurs in the
viscous sublayer where mt � y3

w. Because of this, the argument
is commonly made that temperature or concentration pro®les
can be calculated by assuming Dt � y3

w. The results outlined
above suggests that this approach is incorrect.

If Dt is known, the dependency of h2 on y and on Pr can be
calculated from the balance equation for kh, but expressions
for the dissipation and transport terms are needed. The dissi-
pation can be represented by Eq. (13). For the range of Pr
covered by the Eulerian calculations, kh varies roughly with

Prÿ1=3. The explanation of this dependency resides in under-

standing the e�ect of Pr on the spectral function for h2. The use
of the gradient transport model, Eq. (18), gives only a crude
representation of the turbulent transport of kh. An examina-
tion of the transport terms for Pr� 1 and 10 suggests that the
introduction of a proportionality constant in Eq. (18) will not
provide a quick ®x. However, the transport terms are not
large, so even a rough approximation might be satisfactory.
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